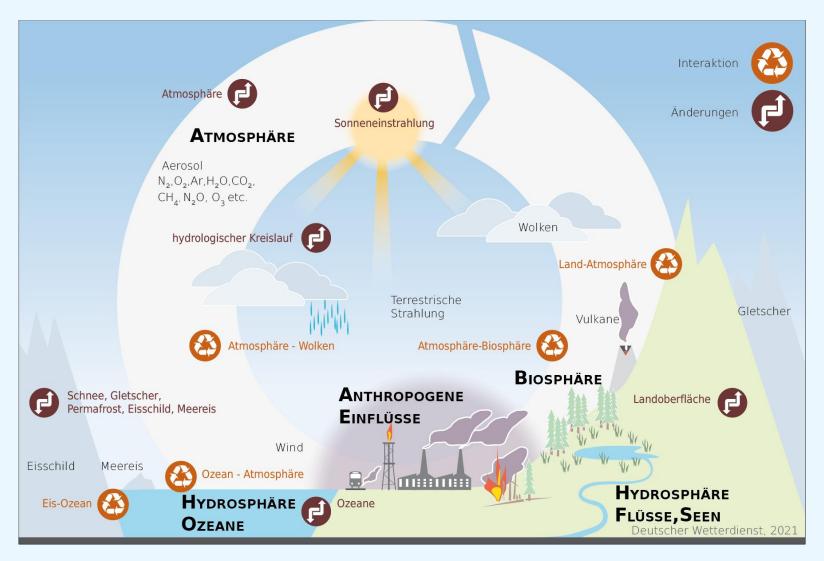

d:f-Webinar Nr. 28 02. Juni 2023

## Digitalisierung – Klimakiller oder Klimaretter? Welche Rolle spielt der Mobilfunk?

Prof. Dr.-Ing. habil. Wilfried Kühling


# Anstieg der globalen Oberflächentemperaturen im Zeitraum 1850 bis 2020 im Vergleich zu 1850–1900

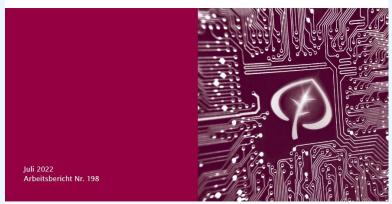


(Wikimedia Commons

[https://de.wikipedia.org/w/index.php?lang=de&title=Datei%3AGlobal\_Temperature\_And\_Forces.svg])

### Komponenten des Klimasystems

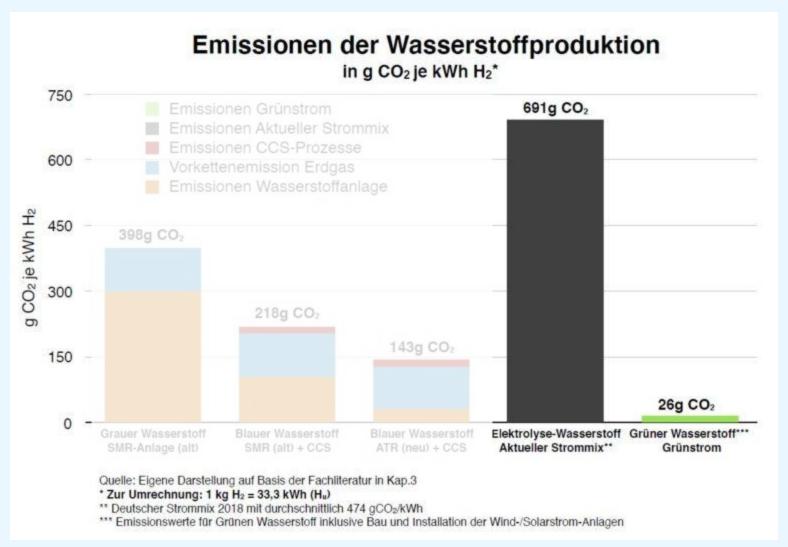



Deutscher Wetterdienst: https://www.dwd.de/DE/klimaumwelt/klimawandel/klimawandel\_node.html

### Übersicht

- 1. Klimafragen (generelle Problemsicht)
- 2. Digitalisierung (Problemsicht)
- 3. "Effizienzpotenziale" Mobilfunk/5G
- 4. Konzept Funkwende (energetische Sicht)
- 5. Fazit/Ausblick

### Grundlegende Studien

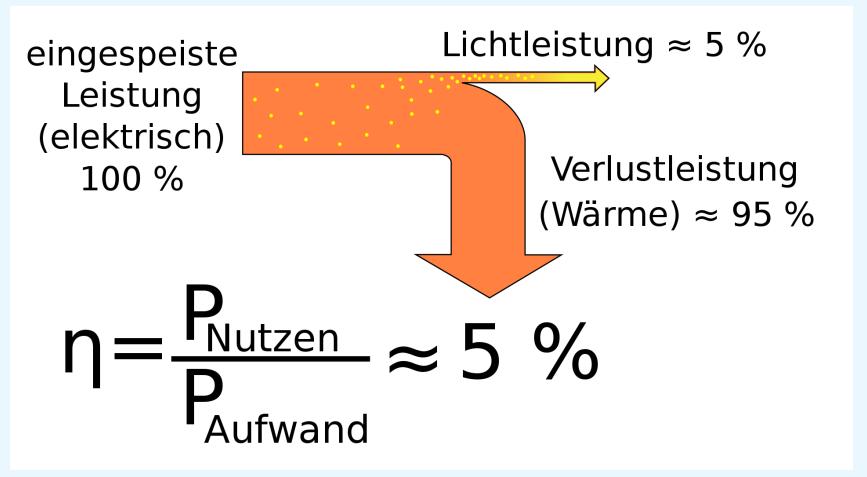







### 1. Klimafragen I (generelle Problemsicht)

Klima wirksamkeit von Technologien, Anwendungen, Verhaltensweisen etc.

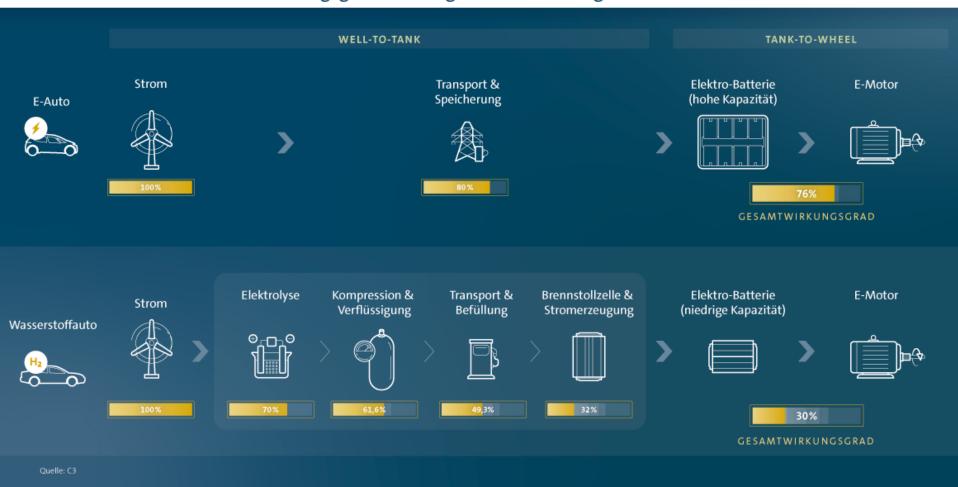



Bukold S. (2020): Wasserstoff – Perspektiven und Grenzen eines neuen Technologiepfades. Greenpeace energy.

### Klimafragen I

- Klimawirksamkeit von Technologien,
   Anwendungen, Verhaltensweisen etc.
- Mit welcher Effizienz (Energiebilanz/ Wirkungsgrad) werden erneuerbare Quellen genutzt?

### Energieeffizienz/Wirkungsgrad (Glühlampe)




Wikimedia Commons: Wirkungsgrad gluehlampe.svg

### Wirkungsgrade

#### WASSERSTOFF UND E-ANTRIEB

Die Wirkungsgrade im Vergleich bei Nutzung von Öko-Strom



https://www.volkswagenag.com/de/news/stories/2019/08/hydrogen-or-battery--that-is-the-question.html#:~:text=Von%20diesen%20%C3%BCbrig%20gebliebenen%2055,von%2025%20bis%2035%20Prozent.

e-fuels: 10-15 %...

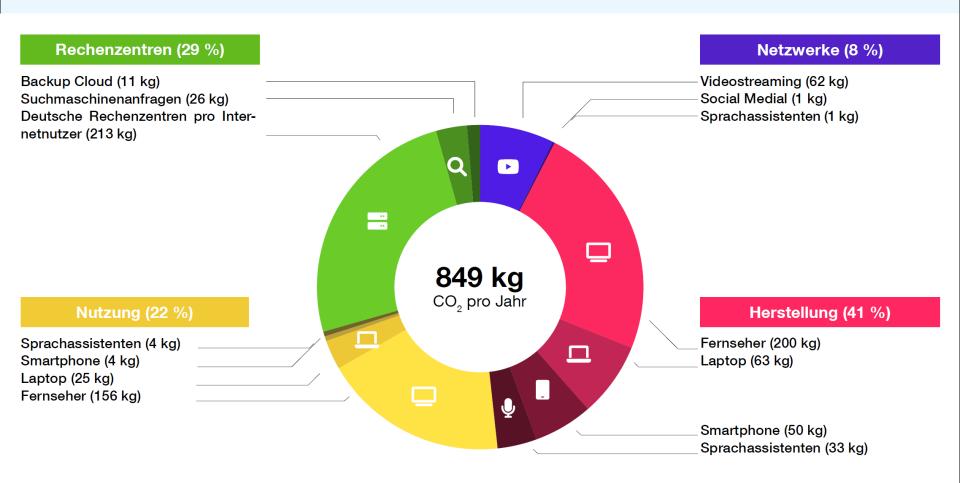
### Klimafragen I

- Klimawirksamkeit von Technologien, Anwendungen, Verhaltensweisen etc.
- Mit welcher Effizienz (Energiebilanz/ Wirkungsgrad) werden erneuerbare Quellen genutzt?
- Wie ist die Ökobilanz (Materialflüsse/ Ressourcen-/Flächenverbrauch: ökologischer Rucksack, ökologischer Fußabdruck)?
- Zeitliche und räumliche Verfügbarkeit?
- Rebound-Effekte.

### Klimafragen II

- Problemauslagerung: Importe von Gütern, die unter hohen Belastungen und geringen Sozialstandards fernab produziert wurden.
- Klimagerechtigkeit?
- → Politik: einfache Forderungen/Lösungen?
- Zwischenfazit: Zentrale Größen:
  - Klimawirksamkeit
  - Energieeffizienz/Wirkungsgrad
  - Ökobilanz (auch soziale Auswirkungen)

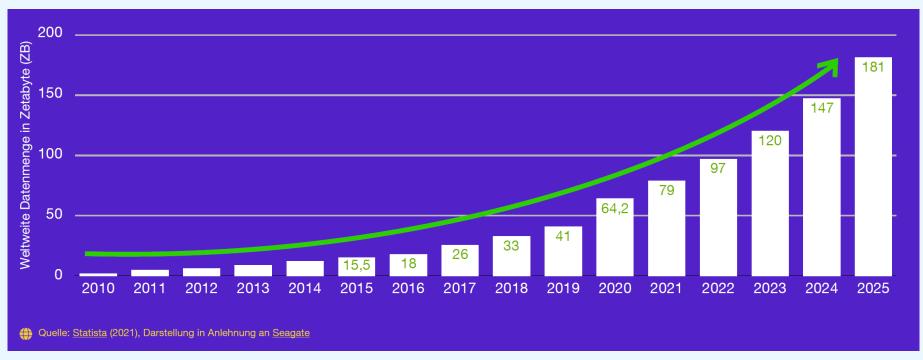
### Übersicht


- 1. Klimafragen (generelle Problemsicht)
- 2. Digitalisierung (Problemsicht)
- 3. "Effizienzpotenziale" Mobilfunk/5G
- 4. Konzept Funkwende (energetische Sicht)
- 5. Fazit/Ausblick

### 2 Digitalisierung (Problemsicht)

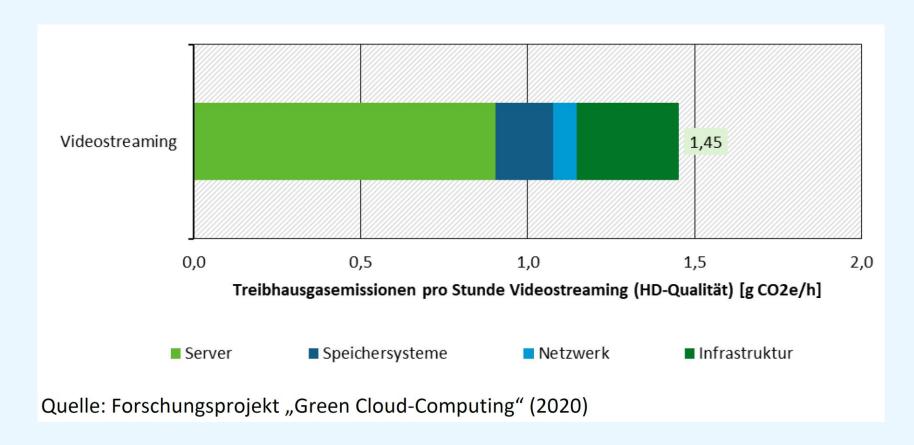
- Ökonomische/gesellschaftliche Diskussion versus erhebliche ökologische Wirkungen: Digitale Infrastrukturen (Endgeräte, Rechenzentren und Telekommunikationsnetze) verbrauchen große Mengen an Energie und Rohstoffen
- Effizienzgewinne (z. B. in Computerprozessoren) werden durch enormen Anstieg der Nutzung konterkariert.

### CO2-Emissionen durch digitale Aktivitäten


(Angaben in kg CO2/Pers./a)

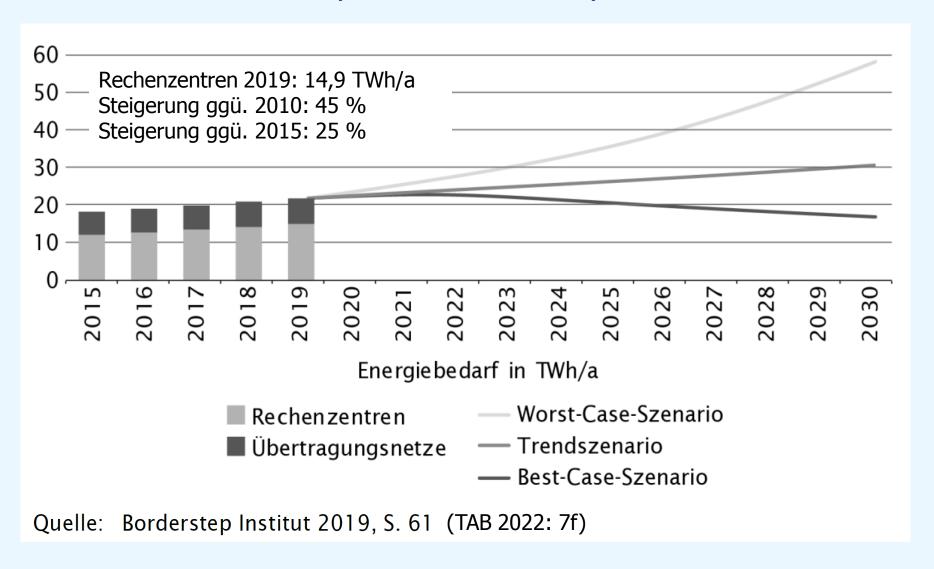


Quelle: Öko-Institut e.V. (2021), CC BY-SA 2.0 Aus: Greenpeace e. V. (2022): Datenmenge - Digitalisierung und Nachhaltigkeit: Ein Widerspruch?

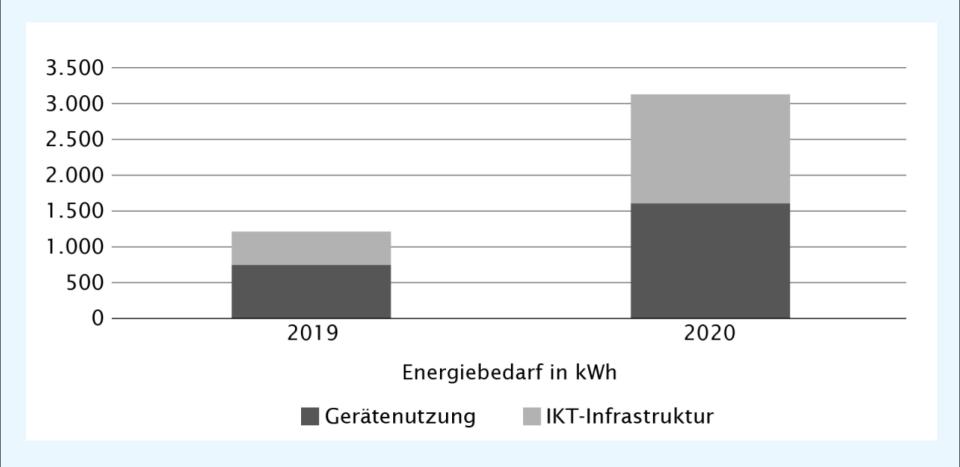

### Anstieg der weltweiten Datenmenge

- Pro Minute werden 167 Mio. Videos bei Tik Tok angesehen, finden 5,7 Mio. Google-Suchen statt.
- UBA: Anstieg Datenvolumen von 2019 bis 2030 um etwa f=45. Ursache: Mobiles Videostreaming.

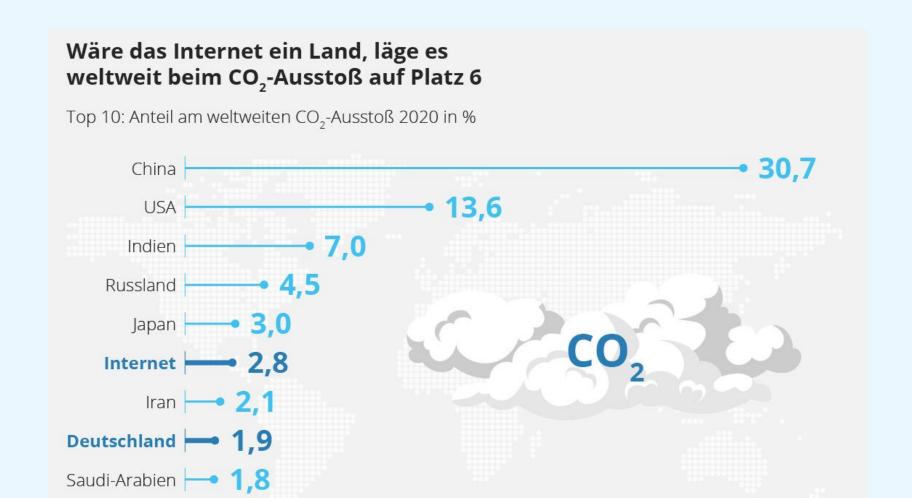



Aus: Greenpeace e. V. (2022): Datenmenge - Digitalisierung und Nachhaltigkeit: Ein Widerspruch?

### Videostreaming



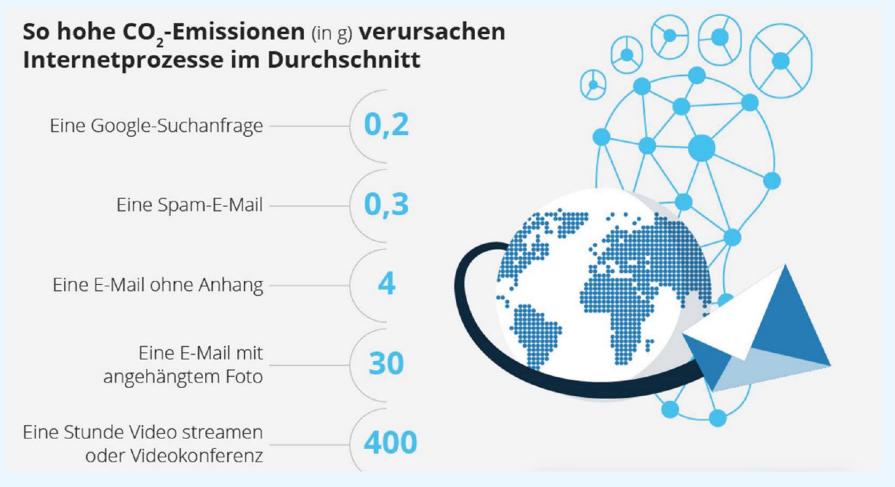

### Szenarien Energiebedarf IKT-IS in D bis 2030


 $(+ \sim 10 \% \text{ im Ausland})$ 



# COVID-19: Veränderungen des Energiebedarfes eines Beispielhaushalts mit intensiver Mediennutzung




(TAB 2022: 40)



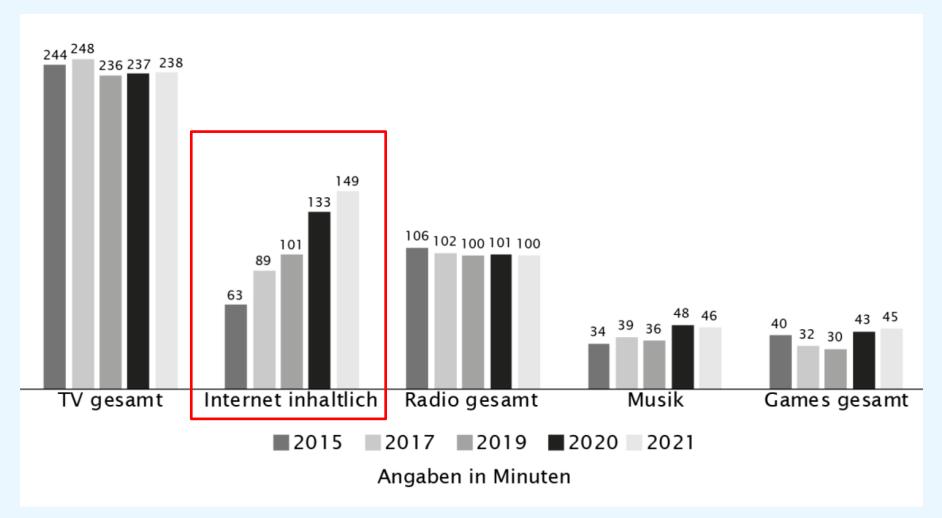
Quelle: Schmidt-Feneberg P. (2023): So viel Energie verbraucht das Internet. [https://de.statista.com/infografik/26873/co2-vergleich-dsl-und-glasfasernetz/].

Südkorea — 1,7

 (End-)Geräteherstellung: etwa 10-mal so viel Energieverbrauch wie bei der Nutzung (bei deutlichem Anstieg)



Quelle: Schmidt-Feneberg P. (2023): So viel Energie verbraucht das Internet. [https://de.statista.com/infografik/26873/co2-vergleich-dsl-und-glasfasernetz/].


### Beispiel: Blockchain-Architektur

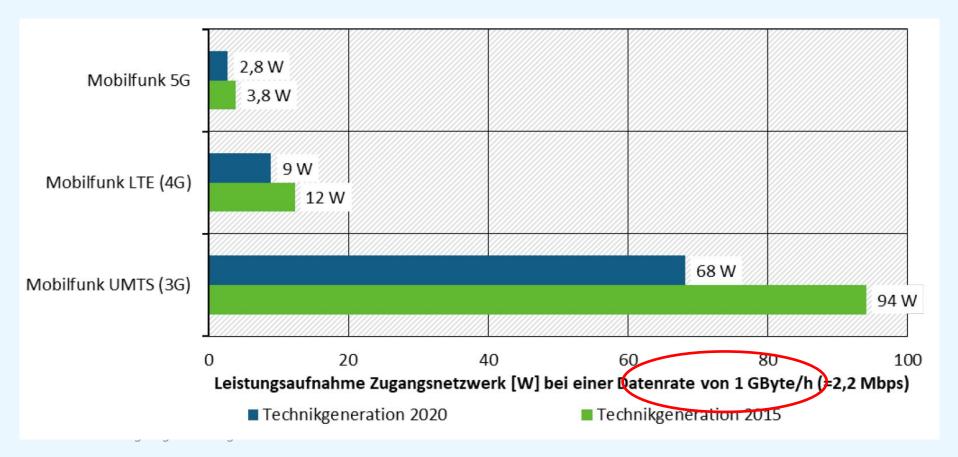
### Das "Schürfen" von Bitcoins:

- verbraucht 10-20 % des Stroms in Rechenzentren,
- bei einer (!) Transaktion werden zwischen 340 bis 530 kWh Strom benötigt (Stromverbrauch 2-Personenhaushalt bis zu zwei Monate)!
- Spezielle Elektronikkomponenten (Hardware) müssen aufgrund des starken Wettbewerbs oft erneuert werden.

(TAB 2022: 14ff)

### Durchschnittliche tägliche Nutzungsdauer/ Konsum Medienangebote

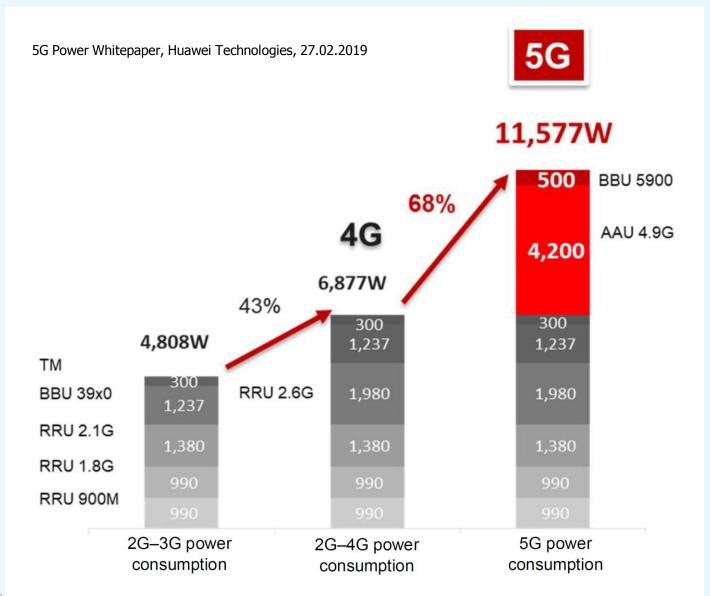



(TAB 2022: 38)

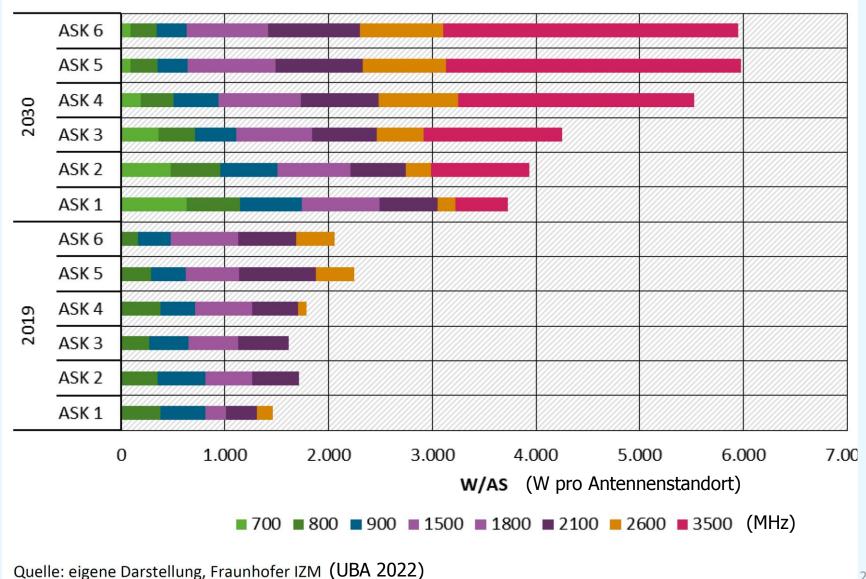
### Übersicht

- 1. Klimafragen (generelle Problemsicht)
- 2. Digitalisierung (Problemsicht)
- 3. "Effizienzpotenziale" Mobilfunk/5G
- 4. Konzept Funkwende (energetische Sicht)
- 5. Fazit/Ausblick

### 3. "Effizienzpotenziale" 5G


- Reduktion Klimawirksamkeit pro GB um 85 %
- Leistungsaufnahme Zugangsnetz für Mobilfunknetzwerke:




### 3. "Effizienzpotenziale" 5G

- Aber: übertragene Datenmenge, mehr Antennen/Basisstationen, Anstieg Energiebedarf pro Basisstation macht höheren Energiebedarf im Mobilfunknetz wahrscheinlich (TAB 2022: 30).
- 4G-Netz → 5G: wird mehr als dreieinhalb Mal so viel Strom verbrauchen. (Inside Telecom Staff 2020)

#### Typischer maximaler Stromverbrauch eines 5G-Standorts



# Leistungsaufnahme Funkmodule in Abh. der Frequenz und Standortkategorie (Szenario 2019 und 2030)



### Mobilfunk/5G neu Denken und Handeln!

- UBA 2020\*): "Mobilfunk für Hausanschluss ungeeignet und aus Sicht des Umwelt- und Klimaschutzes nicht tragfähig."
- WBGU 2019\*\*): "Digitalisierung entfaltet ihre zerstörerische Kraft mit großer Geschwindigkeit, während ihre Regulierung größtenteils nacheilend erfolgt."
- Rasante Entwicklung und Fortschrittsgläubigkeit meist ohne ausreichende Risikobetrachtung/TFA.
- Daher: "Funkwende" nötig und möglich!

<sup>\*)</sup> Umweltbundesamt (2020): Energie- und Ressourceneffizienz digitaler Infrastrukturen.

<sup>\*\*)</sup> Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen (2019): Unsere gemeinsame digitale Zukunft. Berlin.

### Übersicht

- 1. Klimafragen (generelle Problemsicht)
- 2. Digitalisierung (Problemsicht)
- 3. "Effizienzpotenziale" Mobilfunk/5G
- 4. Konzept Funkwende (energetische Sicht)
- 5. Fazit/Ausblick

### 4. Konzept Funkwende\*): Näherungen

- a) Schutzsystem bei schädlichen Umwelteinwirkungen (BImSchG) einhalten
- b) Unverletzlichkeit der Wohnung (EMRK).
- c) Rechtlich unzureichende Bewertung ("Schutz", "Vorsorge") wissenschaftlicher Erkenntnisse
- d) Enormes Verringerungs- und Steuerungspotenzial bei EMF durch "Netzoptimierung".
- e) Berücksichtigung der Klimawirkungen/ Energieverbrauch

<sup>\*)</sup> https://kompetenzinitiative.com/funkwende-fuer-gesundheit-klima-umwelt -dringend-erforderlich-und-intelligent-gestaltbar/

"Bewirtschaftung" der HF-EMF im öffentlichen Raum nötig (hoheitliches Schutz-/Vorsorgekonzept, analog Wasser u.a. Ressourcen)

#### Videos etc.:

- Funkwende Eine Denkschrift. In: umg 4/2022 (<a href="https://www.diagnose-funk.org/1914">https://www.diagnose-funk.org/1914</a>)
- KI-Tagung Düsseldorf 15.10.22: Funkwende (<a href="https://www.youtube.com/watch?v=pED9Sj2p-TU">https://www.youtube.com/watch?v=pED9Sj2p-TU</a>)
- Kommunale Mobilfunkvorsorgekonzepte (<a href="https://www.diagnose-funk.org/1753">https://www.diagnose-funk.org/1753</a>)
- Li-Fi innen: Webinar 25 (<a href="https://www.diagnose-funk.org/1875">https://www.diagnose-funk.org/1875</a>)

# Richtwerte für ausgewählte HF-Quellen (EUROPAEM\* EMF-Leitlinie 2016)

Tabelle 3: Richtwerte für hochfrequente elektromagnetische Strahlung (HF)

| HF-Quelle<br>MAX PEAK / PEAK HOLD      | Exposition am Tag   | Exposition in der Nacht | empfindliche<br>Personengruppen 1) |
|----------------------------------------|---------------------|-------------------------|------------------------------------|
| Rundfunk (FM, UKW)                     | $10.000  \mu W/m^2$ | $1.000  \mu W/m^2$      | 100 μW/m²                          |
| TETRA                                  | $1.000  \mu W/m^2$  | $100  \mu W/m^2$        | 10 μW/m²                           |
| DVB-T                                  | 1.000 μW/m²         | 100 μW/m²               | 10 μW/m²                           |
| GSM (2G) 900/1800 MHz                  | $100 \mu W/m^2$     | $10 \mu W/m^2$          | 1 μW/m²                            |
| DECT                                   | $100 \mu W/m^2$     | $10 \mu W/m^2$          | $1  \mu W/m^2$                     |
| UMTS (3 G)                             | $100 \mu W/m^2$     | $10 \mu W/m^2$          | $1  \mu W/m^2$                     |
| LTE (4G)                               | $100 \mu W/m^2$     | $10 \mu W/m^2$          | 1 μW/m²                            |
| GPRS (2,5 G) mit PTCCH* (8,33 Hz Puls) | 10 μW/m²            | $1 \mu \text{W/m}^2$    | 0,1 μW/m²                          |
| DAB+ (10,4 Hz Puls)                    | $10 \mu W/m^2$      | $1 \mu W/m^2$           | $0,1  \mu \text{W/m}^2$            |
| WLAN 2,4/5,6 GHz (10 Hz Puls)          | $10 \mu W/m^2$      | $1 \mu W/m^2$           | 0,1 μW/m <sup>2</sup>              |

<sup>\*</sup>PTCCH = Packet Timing Advance Control Channel

Auf der Grundlage von: BioInitiative (9, 10); Kundi and Hutter (260); Leitfaden Senderbau (221); PACE (42); Seletun Statement (40). <sup>1)</sup> Vorsorgeansatz beruht auf einem Faktor 3 (Feldstärke) = ein Faktor 10 (Leistungsflussdichte). Siehe auch IARC 2013 (24) und Margaritis et al. (267).

<sup>\*</sup> Europäische Akademie für Umweltmedizin (EUROPAEM) – Arbeitsgruppe EMF

### Prinzip Schutzsystem BImSchG (Bsp. Lärm)

### Indoor <30 dB(A)

- Erholsamer Schlaf nachts (WHO)
- Zur Lüftung geöffnetes Fenster
- Mittelungspegel (...)



Dämpfung Gebäude: 10-15 dB(A)

### Outdoor 40 dB(A)

- WR nachts gemäß DIN 18005 (Straßenverkehr)
- WR/WA nachts gemäß
  TA Lärm (35/40 dB(A))
  - Mittelungspegel

### Nicht ionisierende Strahlen (NIS)

### Indoor 1 $\mu$ W/m<sup>2</sup>

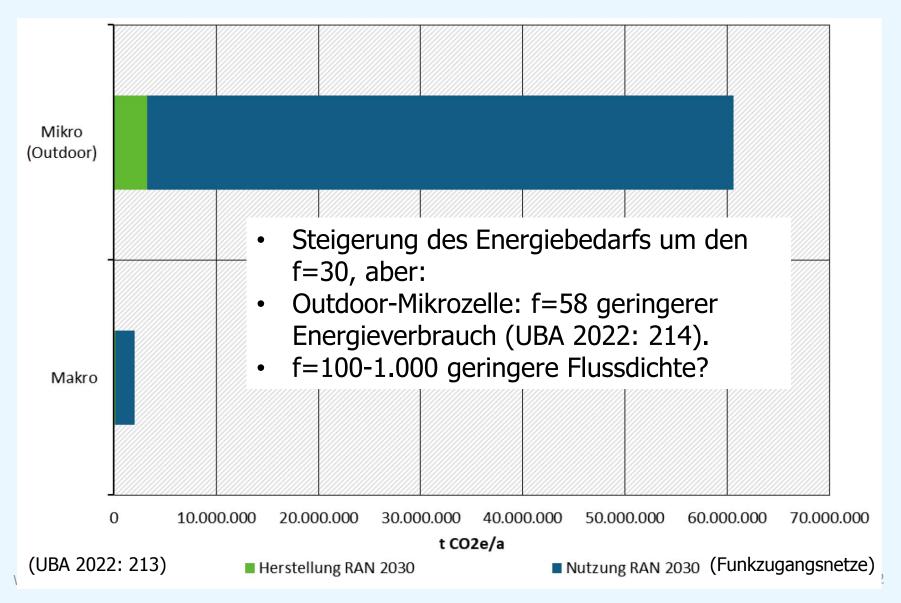
- Weitgehender Schutz/ Vorsorge möglich (auch durch weitere Maßnahmen)
- Maximalpegel



Dämpfung Gebäude:

~20 dB

### Outdoor 100 µW/m<sup>2</sup>


- Einzuführender Richtwert für Sendeanlagen
  - Maximalpegel

36

### Intelligente Netzstruktur

- Optimierung von Outdoor-Mikro- und -Makrozellen je nach Siedlungsbereich und großräumiger Versorgung.
- Abschätzung der Einsparungen durch reduzierte Feldstärken/Flussdichten (f=100->1.000) nötig.
- Lokales Roaming.
- 26. BImSchV gemäß § 22 Abs. 1 Satz 1 BImSchG: "Schädliche Einwirkungen sind zu verhindern bzw. auf ein Mindestmaß zu beschränken."

# 100 % Flächenabdeckung mit Makro- vs. Outdoor-Mikrozellen (Basisszenario, 2030)

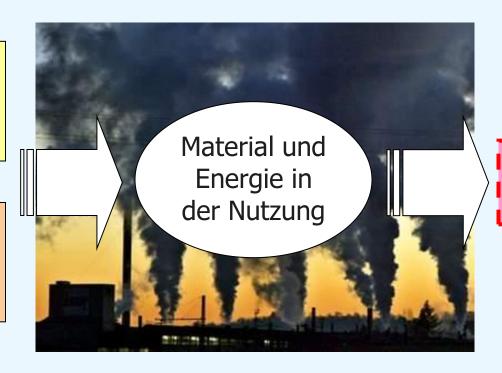


### Übersicht

- 1. Klimafragen (generelle Problemsicht)
- 2. Digitalisierung (Problemsicht)
- 3. "Effizienzpotenziale" Mobilfunk/5G
- 4. Konzept Funkwende
- 5. Fazit/Ausblick

### 5 Fazit/Ausblick

- Zunahme Datenverkehr = Klimakiller
- Meist einseitige Sicht auf Einsparung fossiler Energie und Ausbau der Erneuerbaren blendet weitgehend aus, welche endlichen Rohstoffe eines endlichen Planeten bestehen (→ Erd-Erschöpfungstag, D: 4. Mai).
- Stoffliche Durchsatzmenge erschöpft die "Senken" durch Abfälle und Verschmutzungen.


# Durchsatzmenge als Grenze im globalen Ökosystem

a) Quellen

Sich regenerierende Ressourcen

Sich nicht regenerierende Ressourcen

nach: Meadows et al. 1992



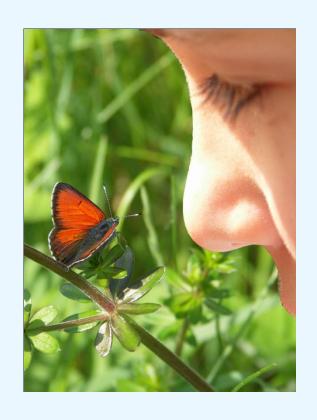
b) Senken

Abfälle und Verschmutzung

#### Wachstumsgrenzen:

- a) Leistungsfähigkeit der Quellen
- b) Aufnahmefähigkeit der Senken

### Wachstum der Weltbevölkerung


### "Wohlstand" erhalten?

- Wuppertal Institut: Faktor "Zehn"…
- "Gürtel enger schnallen", sparsamer sein, erst denken, dann handeln…



### Quellen

- UBA = Umweltbundesamt (2020): Energie- und Ressourceneffizienz digitaler
   Infrastrukturen.
  - [https://www.umweltbundesamt.de/sites/default/files/medien/376/publikationen/politische-handlungsempfehlungen-green-cloud-computing\_2020\_09\_07.pdf].
- UBA = Umweltbundesamt (Hrsg.) (2022): Umweltbezogene Technikfolgenabschätzung Mobilfunk in Deutschland - Projekt UTAMO. TEXTE 11/2022. Berlin.
  - [https://www.umweltbundesamt.de/sites/default/files/medien/479/publikationen/text e 26-
  - 2023\_umweltbezogene\_technikfolgenabschaetzung\_mobilfunk\_in\_deutschland.pdf].
- TAB = Büro für Technikfolgen-Abschätzung beim Deutschen Bundestag (2022a): Energieverbrauch der IKT-Infrastruktur. Grünwald, R. & Caviezel, C. Endbericht zum TA-Projekt, Arbeitsbericht Nr. 198, Berlin.
  - [https://publikationen.bibliothek.kit.edu/1000151164/149393331].



statt



Vielen Dank für Ihre Aufmerksamkeit!

Umfassende weitere Info: <a href="https://kompetenzinitiative.com/">https://kompetenzinitiative.com/</a>
<a href="https://www.diagnose-funk.org/">https://www.diagnose-funk.org/</a>

### Was kann ich persönlich tun?

#### Z. B. Datenvolumen im Internet reduzieren:

- Leitungsgebunden arbeiten (nicht über Mobilfunk).
- Suchanfragen (Google etc.) reduzieren, Seiten direkt ansteuern.
- Wiedergabequalität von Videos reduzieren (HD-Qualität notwendig?)/dem Endgerät anpassen.
- Datenvolumen (Auflösung) von Dokumenten, Bildern reduzieren (beim Versand), weniger Bilder versenden.
- Häufig anzusehende Videos herunterladen, speichern.
- (...)

Sonnenstrom selbst nutzen, Ökostrom beziehen...